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= QOutline

= How were we (humans) used to programming computers?
= Programming with large language models (LLMs)

= Existing practice: selected examples

= Future directions
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= Different ways we (humans) used to program computers

» Programming is writing computer code (program), based on an algorithm, to solve a problem.y
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FLOWCHART VISUAL PROGRAMMING
1 KTake the users input
2 words = raw_input("Enter some text to translate to pig latin: ")
3 print "You entered: ", words
4
S #Now I need to break apart the words into a list
6 words = words.split(' '
7
8 #Now words is a list, so I can manipulate each one usinga loop
9
10 for i in words:
11 if len(i) >= 3: #I only want to translate words greater than 3 characters
7 12 i=1+ "%say" % (i[0])
13 i=1i[1:
14 print i
e e‘“;,ass IMPERATIVE AND DECLARATIVE PROGRAMMING

ze=

“NO CODE” PROGRAMMING
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= Large language models in education

= Taxonomy of LLMs for education applications:e

Question Solving (QS)

Study Assisting

Error Correction (EC)

Confusion Helper (CH)

Question Generation (QG)

Academic
R 1

Teach Assisting Automatic Grading (AG)

N

Material Creation (MC) /

Question Solving

Error Correction

-~
TiT

Confusion Helper

Question: Beth bakes 4,2 dozen batches of cookies in a
week. If these cookies are shared amongst 16 people
equally, how many cookies does each person consume?

Solution:4*2=8,12*8=96, 96/16=6
Answer: 6

Written Sample: | has three cat and | love to playing with
them everyday after | find some free time during the day.

Suggested Correction: | - three - and | love l

playing with them everyday aftertfind-seme-free-time
duringthe-day whenever | am free.

Confusion Point: What is the relationship between gravity
and weight?

Explanation: Weight is the force of gravity acting on an
object's mass. It varies with the strength of the gravitational
field: more gravity means more weight, less gravity means
less weight. Your weight on the Moon would be less than on
Earth due to the Moon's weaker gravity.

Tl

Pon—

Large Language
Model (LLM)

e

Request: Give me a math word problem involving arithmetic
calculation.

Question: Beth bakes 4,2 dozen batches of cookies in a
week. If these cookies are shared amongst 16 people
eequally, how many cookies does each person consume?

Problem: Describe the animal you like and explain why.
Rubrics: Answer should cover the animal and the reason.
Student Submission: | love cat because they are always
quite and cute.

Grade: Full credit.

Request: Create an outline for course CS1: ion to

Question Generation

Automatic Grading

(AG)

Data Structure.

Course Overview
Module 1: Introduction to Data Structures and Algorithms
Module 2: Arrays and Strings

Material Creation

(Mo)

Knowledge Tracing (KT)

-(Adaptive Learning J—

Content Creation

Content Personalizing (CP)

T

i

—(Commercial Tools }—(Teaching Aide

Collaboration Tool
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= Large language models in education

= Existing datasets and benchmarks are constructed for
text-rich educational downstream tasks, with an emphasis

on QS (question solving), EC (error correction),

QG (question generation), and AG (automatic grading).«

Table 1: Summary of existing datasets and benchmarks in the area of LLMs for education.

Dataset&Benchmark App  User Subject Level Language Modality =~ Amount A
Defects4] EC student computer science professional EN & Java  text& code 357
ManyBugs EC student computer science professional EN&C text& code 185
IntroClass EC student computer science professional EN&C text& code 998
QuixBugs EC student computer science professional EN & multi  text& code 40
Bugs2Fix EC student computer science professional EN & Java  text& code 2.3M
CodeReview EC student computer science professional EN & Multi  text& code 642
CodeReview-New EC student computer science professional EN & Multi  text& code 15

Table 1: Summary of existing datasets and benchmarks in the area of LLMs for education.

Dataset&Benchmark App  User Subject Level 1 Modality Amount
GSMB8K QS student math K-12 EN text 8.5K
MATH QS student math K-12 EN text 12.5K
Dolphin18K QS student math K-12 EN text 18K
DRAW-1K QS student math comprehensive EN text 1K
Math23K QS student math K-12 ZH text 23K
Ape210K QS student math K-12 EN, ZH text 210K
MathQA QS student math K-12 EN text 37K
ASDiv QS student math K-12 EN text & image 2K
IconQA QS student math K-12 EN text & table 107K
TQA QS student science K-12 EN text & image 26K
Geometry3K QS student geometry K-12 EN text & image 3K
AIZD QS student science K-12 EN text & image 5K
SCIENCEQA QS student science K-12 EN text & image 21K
MedQA QS student medicine professional EN text 40K
MedMCQA QS student medicine professional EN text 200K
TheoremQA QS student science college EN text 800
Math-StackExchange QS  student math comprehensive EN text 310K
TABMWP QS student math K-12 EN text 38K
ARC QS student prek prehensive EN text 7.7K
C-Eva QS student hensive comprehensive ZH text 13.9K
GAOKAO-bench QS student prehensive comprehensive ZH text 2.8K
AGIEval QS student  comprehensive comprehensive EN, ZH text 8k
MMLU QS student  comprehensi comprehensi EN text 1.8K
CMMLU QS student  comprehensive comprehensive ZH text 119K
SuperCLUE QS student  comprehensive comprehensive ZH text 15.9K
LANG-8 EC student linguistic language training Multi text M
CLANG-8 EC  student linguistic language training Multi text 2.6M
CoNLL-2014 EC  student linguistic language training EN text 58k
BEA-2019 EC  student linguistic language training EN text 686K
SIGHAN EC student linguistic language training ZH text 12K
CTC EC  student linguistic language training ZH text 218K
FCGEC EC  student linguistic language training ZH text 41K
FlaCGEC EC  student linguistic language training ZH text 13K
GECCC EC  student linguistic language training Cs text 83K
RULEC-GEC EC  student linguistic language training RU text 12K
Falko-MERLIN EC  student linguistic language training GE text 24K
COWS-L2H EC student linguistic language training ES text 12K
UA-GEC EC  student linguistic language training UK text 20K
= BONACG o e EC oI s o HGUISEE e e JANGUAZELEARIG o e B o e et s o
] Defects4] EC student computer science professional EN & Java text& code 357
1 ManyBugs EC student computer science professional EN&C text& code 185 |1
1 IntroClass EC  student p science professional EN&C text& code 998 |1
1 QuixBugs EC student computer science professional EN & multi  text& code PO |
1 Bugs2Fix EC student computer science professional EN & Java  text& code 23M |
1 CodeReview EC  student p science professional EN & Multi  text& code 642 |
CodeReview-New EC  student science professional EN & Multi  text& code 15 1

teacher

science

RACE QG  teacher linguistic K-12 EN text
FairytaleQA QG  teacher literature K-12 EN text 10K
LearningQ QG teacher  comprehensive MOOC EN text 231K
KHANQ QG  teacher science MOOC EN text 1K
EduQG QG  teacher  comprehensive MooC EN text 3K
MCQL QG teacher  comprehensive MOOC EN text 7.1K
Televic QG teacher  comprehensive MOOC EN text 62K
CLC-FCE AG  teacher linguistic standardized test EN text 1K
ASAP AG  teacher linguistic K-12 EN text 17K
TOEFL11 AG teacher linguistic standardized test EN text 1K
ICLE AG  teacher linguistic standardized test EN text 4K
HSK AG  teacher linguistic standardized test ZH text 10K
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= Large language model-based programming
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https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/
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= Large language model-based programming

» Pedagogical approaches for explaining code:s

= “Explain in Plain English” (EiPE)
= Students explain the purpose of code fragments at an abstract level

= Code tracing

» Students need to understand how the code executes and “predict” its behaviour (changes to memory and internal state)
and output

= Pair programming
» Students explain their code and their thinking process to their partner

= Misconception-based feedback
» Students follow prompts based on common misconceptions to guide discussion about code
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= Example practices: code explanation

Setting: e-book on Web software development

Experiences from Using Code Explanations Generated by
Large Language Models in a Web Software Development E-
Book

Authors: ‘ Stephen MacNeil Andrew Tran Arto Hellas, Joanne Kim Sami Sarsa, & Paul Denn

Seth Bernstein, ‘ Juho Leinonen Authors Info & Claims

SIGCSE 2023: Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 1 « March 2023 «
Pages 931-937 « https://doi.org/10.1145/3545945.3569785

Goal: integrate explanations generated by LLMs into Computer Science classrooms.

Research questions:

» RQ1: How do students engage with the generated explanations, and which types of explanations do they use most
frequently? For what types of code snippets do students request explanations?

» RQ2: What are the characteristics of explanations that students rate as most and least helpful?

Approach: Use of LLMs to generate three types of explanations:

» Line-by-line explanation
= List of important concepts
» High-level summary of the code

= A total of 13 code snippets * 5 code explanations * 3 types of explanations = 195 explanations were

generated and added to two chapters of the e-book.
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Code snippet: JavaScript program that uses the Deno
runtime to launch a Web server.

import { serve } from "https://deno.land/std@0
< .140.0/ http/server.ts";

let count = 0;
const handleRequest = (request) => {
if (request.method === "POST") {
count ++;
}

return new Response(count);

}s
serve (handleRequest, { port: 7777 });

Line-by-line

Concepts/purpose

Measures: (i) explanation view time; (ii) number of

views; and (iii) subjective ratings.

5.0

o
o

c

o
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Figure 2: Boxplot of explanation usefulness ratings with +
indicating mean. Although most viewed among students,

line-by-line explanations were rated least helpful.

e The first line imports the ‘serve’ function from the ‘server‘ mod-
ule in the ‘std‘ library from version 0.140.0 of the Deno runtime.

The purpose of this code is to create a simple server that counts
how many POST requests it receives.

e The second line declares a ‘count’ variable and initializes it to ‘0°.
e The third line defines a ‘handleRequest’ function that takes a

Summary

‘request’ parameter. This function increments the value of ‘count’
if the ‘request’ method is ‘POST".

o The fourth line returns a new ‘Response’ object containing the
value of ‘count’.

e The fifth line calls the ‘serve‘ function, passing in the ‘han-
dleRequest’ function and an options object. The options object
sets the ‘port’ property to ‘7777

Codex: # Summarize and explain the goal of the above code

(1) A web server is listening on port 7777. The handleRequest function is
called when a request is accepted. What is the structure of the Deno
module system? Deno supports ES Modules.

GPT-3: # Summarize and explain this code snippet

(1) This code snippet creates a web server that listens on port 7777 and
returns "Hello world!" for every request.

176 explanations,

58 students,
Summer 2022
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= Example practices: code explanation

Setting: 1st-year programming course, ~1,000 students ¢

Comparing Code Explanations Created by Students and Large
Language Models

‘ Juho Leinonen, & Paul Denny, ‘ Stephen MacNeil Sami Sarsa, Seth Bernstein, Joanne Kim

Andrew Tran, Arto Hellas Authors Info & Claims

ITICSE 2023: Proceedings of the 2023 Conference on Innovation and Technology in Computer Science Education V. 1 « June 2023 «
Pages 124-130 « https://doi.org/10.1145/3587102.3588785

Goal: comparison of code explanations created by students vs those generated by LLMs

Research questions:

» RQ1: To what extent do code explanations created by students and LLMs differ in accuracy, length, and understandability?

» RQ2: What aspects of code explanations do students value?

Approach: two lab sessions

» Lab A: students created explanations (purpose and summary) for three code snippets

» Lab B (2 weeks after): students were shown a random sample of four explanations created by the students in Lab A or
generated by GPT-3, and assessed them based on accuracy, understandability, and length.
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Lab A: function definitions

double AverageNegativeValues(int values[], int length)
{
int i, sum, count;
i=o0;
sum = 0;
count = 0;
while (i < length) {
if (values[i] < ©) {
sum = sum + values[i];
count++;
!
i++;

}

return (double)sum / count;

int LargestValue(int values[], int length)
{

int i, max;

max = values[@];
for (1 = 1; i < length; i++) {
if (values[i] > max) {

| LargestValue

LargestValue

I CountZeros

CountZeros

| AverageNegativeValues

| AverageNegativeValues

Lab A
student
generated
explanations

length
sampling

() oms
language model

generated
explanations

Lab B

evaluating
explanations

Figure 2: Overview of the data generation and sampling. In
Lab B, each student was allocated four code explanations to
evaluate, selected at random from a pool of 54 code expla-
nations, half of which were generated by students in Lab A,
and half of which were generated by GPT-3.

max = values[i];

} int CountZeros(int values[], int length)
} {
int i, count;
return max;
} count = 9;

}
}

return count;

for (1 = 0; 1 < length; i++) {
if (values[i] == 0) {
count++;

Table 1: Descriptive statistics of student responses on code
explanation quality. The responses that were given using a
Likert-scale have been transformed so that 1 corresponds to
‘Strongly disagree’ and 5 corresponds to ‘Strongly agree’.

Student-generated

LLM-generated

Mean Median | Mean Median
Easy to understand  3.75 40 | 412 4.0
Accurate summary 3.78 4.0 4.0 4.0
Ideal length 2.75 30 | 2.66 3.0
Length (chars) 811 738 | 760 731
GPT3 Explanalﬂﬁ\r&;ﬂ;;:g I — ;:;Z’;?‘;d'sagme

Student Explanation Easy to
Understand

GPT3 Explanation Accurate
ummary

Student Explanation Accurate
Summary

400 200

0 200 400 600 800 1000 1200 1400 1600
Number of Responses

Neutral
- Agree
mm Strongly agree

Figure 3: Distribution of student responses on LLM and
student-generated code explanations being easy to under-
stand and accurate summaries of code.

963 explanations (Lab A),

954 students (LabB), M
2022
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Example practices: code generation

Setting: 1st-year programming course in Python r,

Research questions:

EI‘<1V > cs > arXivi2401.10759

Computer Science > Human-Computer Interaction

[Submitted on 19 Jan 2024]

Interactions with Prompt Problems: A New Way to Teach Programming with Large Language
Models

James Prather, Paul Denny, Juho Leinonen, David H. Smith IV, Brent N. Reeves, Stephen MacNeil, Brett A. Becker, Andrew Luxton-Reilly, Thezyrie
Amarouche, Bailey Kimmel

Goal: propose a new type of programming problem to teach coding based on Prompt Problems and
related ways of assessing it

» RQ1: How do students interact with Prompt Problems while learning to program?
» RQ2: How do students perceive Prompt Problems affecting their learning of programming concepts?

Approach: “Promptly” tool

= Each prompt problem consists of a visual representation of a problem (no textual description is given) and a set of
associated test cases used to verify the code generated by the LLM.

—
A -] </>~ =x
P X
Visual Learner LLM generates Code
representation enters code from executed

of problem prompt prompt against fests u
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Promptly interface & example exercises

Q Class Registration o Exercise #1

Enter your name:
Hello Bob

A

Write me a Python program that asks the user to enter their name, and then
a space, followed by their name

CLICK HERE TO ASK CHATGPT!

ChatGPT response: /

ello + input("Enter you ame ))

A

Visual representation of
problem (in this case, an
animation illustrates user
interaction with program)

prints the word "Hello" followed by

Prompt entry

LLM response

Execution output (in this case, a

success message as all tests pass)

Enter a number: 3
Child

N

Below 8 Child
8-12 Tween
13-19 Teenager
20 or above Adult

Fig. 3. Producing a categorization based on age.

Enter five decimal numbers (separated by spaces): 2.0 3.0 3.0 3.0 4.0
ENY

go) 80+75+90 - 8.17

Fig. 4. Calculating the average of the “middle” values out of a set
of five values (using the metaphor of judges scoring an athletic
competition, where the highest and lowest values are excluded).
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® Average word count @ Number of students who submitted
(a) question 1

. . ——
Results of student interactions ;. (b) question

24 50 T
Pilot study i 1
54 students 04t
July 2023 v
20 20 4+
I bseq b 1S 4 i bsequent submissions |

! h

I 1ent submissions |

Fig. 5. The average number of words in each subsequent submission and number of participants that submitted. On the x-axis, 1 is
the initial submission (attempt) per question and 2- are subsequent submissions (attempts).
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Results of student interactions

Large scale study

202 students (Lab 10)

147 students (Lab 11)
2,939 prompt submissions
August 2023

(a) Lab 10 Excercise 1

counter([0, 2, 3, 4, 5, 6, 0]) = 2

counter([10, 20, 30]) => @

counter([0, 0, 0, 0, 999]) => 4

(b) Lab 10 Excercise 2
initials('abd def ghi')
initials('xxx') => 'X'

initials('Hi world') =>

(c) Lab 10 Excercise 3
repeat([1, 2, 3, 4]) => [1, 2, 2, 3, 3, 3, 4, 4, 4, 4]

repeat([5]) = [5, 5, 5, 5, 5]

repeat([2, 0, 1, 3]) = [2, 2, 1,

Problem Students Submissions Words in Prompts
Total Correct First Try | Count Mean Min Max | Mean Min Max
Lab10-1 202 118 32 884 4.37 1 30 25.79 7 76
Lab10-2 108 108 74 212 1.96 1 10 27.39 8 93
Lab10-3 107 104 67 224 2.09 1 20 | 3478 8 119
Lab11-1 147 105 39 491 3.34 1 27 41.11 9 198
Lab11-2 97 82 20 502 5.17 1 28 43.96 16 86
Lab11-3 80 60 5 626 7.82 1 47 54.07 23 115

Table 1. Summary of student interactions with the Prompt Problems in Labs 10 and 11. For students, we provide the total number of
unique students that attempted each problem (Total), the number who got it correct (Correct), and the number who got it correct on
the first try (First Try). For submissions, we provide the total number of prompt submissions made for that problem (Count), the
mean number of submissions (Mean), the minimum number of submissions any student had to correctly solve the problem (Min), and
the maximum number of submissions any student had whether correct or incorrect (Max). To describe the words in submitted correct
prompts, we provide the average number of words in correct prompts (Mean), the minimum number of words in correct prompts
(Min), and the maximum number of words in correct prompts (Max).

(d) Lab 11 Excercise 1
scramble("mossy", 1) => 'npttz'

scramble("racecar", 3) => 'udfhfdu’

scramble("hello", @) => 'hello'

scramble("hello", -1) => 'gdkkn'

scramble("zoo", 2) => 'bqq'

(e) Lab 11 Excercise 2
arrange("AaBbCcDd") => 'ABCDdcba’

arrange("MOM DAD") => 'ADDMMO'
arrange("Mom Dad") => 'DMomda’
arrange("A Testing TEST") => 'AESTTTtsnige'

arrange("A1B2 !@ C3D4") => 'ABCD'

(f) Lab 11 Excercise 3
speak("Hello World!") => 'H3110 werld!'

RQ1: How do students interact with
Prompt Problems while learning to program?

speak("STEAK") => '5734K'

speak("Programming is easy") => 'Pr@gr4mmlng 15 345y’
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Easy Task
8 Difficult Task
8 Problem Formulation
. . °
Results of student interactions £ Heraive Atempts
=z Code Examples and Learning
3 Metacognition, Reflection, and Critcal Thinking
Large scale study Understandabity
202 StudentS (Lab 1 O) Overcoming Writer's Block
147 students (Lab 11) Overeliance
= € ®
AUg ust 2023 Number of Instances
Theme Code Code Definition Group . Perceptions of Promptly . Prompting Approaches . Learning from Prompting
P i ¢ Positive Sentiment Student expresses a form of positive sentiment
t}f “,';p 1lons ° Towards Tool towards Promptly as a tool (e.g., U, feedback).
= 2l Negative Sentiment Student expresses a negative sentiment towards
Towards Tool Promptly as a tool.
Easy Task(s) Student‘ indicates that the task of successfully
generating a prompt was easy.
Prompting Approaches Difficult Task(s) Student. indicates that the t.ask of successfully
generating a prompt was difficult.
Students response discusses their approach or
Problem Formulation experiences with formulating a description of
the problem.
Student discusses their experience with or approach
Iterative Attempts to iterative modifications to their initially incorrect

prompt(s) or creation of successive new prompts.
Student mentions learning from seeing different
approaches to the solution, as generated via ChatGPT.
Learning from Metacognition Student mentions their thought processes.

Code Examples and Learning

Prompting Understandability Stud.ent mentions .asPects o.f the. .generelited code.
that improves or limits their ability to interpret it. .
Students indicate that prompting, as a skill, is or could RQ2 How do students perceive Prompt
Overcoming Writers Block be useful for situations where they know the task to Problems affectin g their learnin g of
perform but are unsure of how to form an initial solution. ]
Overreliance Student indicates they might come to rely on prompting. programming conce ptS?

Table 2. The table of themes, codes, and code definitions.
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Authors: Lianne Roest, Hieke Keuning, “’ Johan Jeuring Authors Info & Claims

ACE '24: Proceedings of the 26th Australasian Computing Education Conference ¢ January 2024 « Pages 144—153

- Exa m p I e p ra cti ces : c o d e g e n e rat i 0 n « https://doi.org/10.1145/3636243.3636259

Setting: introductory Python exercises &

Goal: how to design prompts for LLMs to produce next-step hints and enhance them with
explanations.

Research questions:

» RQ1: To what extent can we use LLMs to generate informative and effective next-step hints for Python introductory
programming exercises?

» SQ1 What prompt characteristics are suitable for generating effective next-step hints with LLMs?
» SQ2 What are students’ and experts’ perceptions of the quality of LLM-generated next-step hints?

Approach: “StAP-tutor” (Step Assisted Programming tutor)
» Input is a dataset with sequences of steps students take when solving a programming problem (148 participants)
» Sequences are used to engineer a prompt for generating next-step hints
= StAP-tutor allows the students to practice Python with the help of next-step hints.
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Exercise for prompt engineering

Pies

A single pie costs A dollars and B cents in
the cafe. Calculate how many dollars and
cents one needs to pay for N pies.

Input: The program receives three
numbers

A - how many dollars a pie costs;

B - how many cents a pie costs;

N - how many pies do you need to buy

Output: Print out two numbers: the
cost of N pies in dollars and cents.

=1 StAP Tutor

Choose exercise: Type code here:

n = int(inputQ))

Count Clumps i list =

= def count_clumps():

1
2
8
. 4~ for i in range(n):
Restart exercise 5 list.append(int(input()))
6
7
8

Exercise: Count Clumps

Say that a "clump" in an array is a
series of 2 or more adjacent elements
of the same value. Return the number
of clumps in the given array. For
example, an array with the numbers
[2,2,3,5,6,6,2] has 2 clumps.

Input: The program receives a
number n, followed by n lines with
one integer per line. These

Output: Print out the number of

clumps
© Show solution

@ Check progress

@ Hint

Example hints using different prompt instructions

Prompt Hint

What is the next step  The next step is to calculate the total cost of N pies by adding v1 and v2.
vl = int(input()) Give a hint for the The next step should involve calculating the total cost of N pies using
v2 = int(input()) next step the updated values of v1 and v2, and then converting the total cost into
v3 = int(input()) dollars and cents.
v2= v2 * v3 Explain the next step It seems like you are trying to calculate the total cost of N pies. You have

vli= vl * v3 for a student

correctly multiplied the cents by the number of pies, but you also need to
multiply the dollars by the number of pies. You can do this by updating
the value of v1 to be v1 multiplied by v3. Then you can use the updated
values of v1 and v2 to calculate the total cost of N pies.

Log out
Rating:
Please rate the hint
The hint is clear.
O O O O O
Strongly ~ Agree  Neutral  Disagree  Strongly
agree disagree
The hint is helpful.
O ® O O O
Strongly ~ Agree Neutral ~ Disagree  Strongly
agree disagree
The hint fits my work.
O O O O O
Strongly ~ Agree Neutral  Disagree  Strongly
agree disagree

Other comments?

Feedback: In the "count_clumps" function, you can iterate over the
list and check if each element is the same as the previous element or
the next element, then count the number of clumps.

The hint fits my work -
The hint is clear -
The hint is useful _

0% 20% 40% 60%

m Strongly disagree ™ Disagree Neutral

Agree

80%

M Strongly agree

Figure 4: Student hint ratings (n=48).

.

100%
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= Example practices: code generation

Evaluating Large Language Models in Class-Level Code

Generation
Xueying Du Mingwei Liu Kaixin Wang Hanlin Wang Junwei Liu Yixuan Chen. Jiayi Feng
Chaofeng Sha, Xin Peng. Yiling Lou Authors Info & Claims

ICSE '24: Proceedings of the IEEE/ACM 46th International Conference on Software Engineering « May 2024 « Article No.: 81
Pages 1-13 « https://doi.org/10.1145/3597503.3639219

= Goal: extend “simple” benchmarks for code generation to more “complex” scenarios.

Table 1: Existing Benchmarks for Code Generation

Benchmark Time | L M VA d Source Granularity | #Tasks | #Tests | #LOC | #Tokens Input Information P TR PR I tStat F
Concode [35] 2018 Java Automated Github Function-level 2,000 - - 26.3 NL rom '|me |mp.e ime IBPOTY Sy en'leu 2
CoNaLA [66] 2018 Python Automated Stack Overflow | Statement-level 500 - 1 - NL class Yf"d_'“FMad""e: — ) e ] Clas_s I““:ne
APPS [32) 2021 | Python A d Contest Sites Competitive | 5000 | 132 | 214 58 NL + Example Inputs/Outputs | """This s a class to simulate a vending e adding products, inserting
: — - coins, purchasing products, viewing balance, replenishing product inventory, and
HumanEval [21] 2021 Python Manual - Function-level 164 7T 115 244 NL + Function Signature + Example Inputs/Outputs displaying product information. """ ‘ A
e Class Description
MBPP [15] 2021 Python Manual - Function-level 974 3.0 6.8 24.2 NL it_(self):
math-qa [15] 2021 Python Manual Math Study Sites | Statement-level | 2,985 - 7.6 24.6 NL o
Multi-HumanEval [14] | 2022 | Multilingual Manual - Function-level 164 77 11.5 244 NL + Function Signature + Example Inputs/Outputs ializes the vending machine's inventory and balance.
MBXP [14] 2022 | Multilingual Manual - Function-level | 974 3.0 638 24.2 NL self.inventory=[] Class Constructor
multi-math-qa [14] 2022 | Multilingual Manual Math Study Sites | Statement-level | 2,985 - 7.6 24.6 NL self. balance= {}
CodeContests [43] 2022 | Python, C++ A d Contest Sites Competitive 165 2037 | 59.8 184.8 NL + Example Inputs/Outputs def purchase_item(self, item_name): Method Signature
DS-1000 [40] 2022 Python Automated Stack Overflow | Statement-level | 1,000 1.6 38 12.8 NL :’"‘ Purchases a product from the vending machine and returns the balance after the
HumanEval+ [44] 2023 Python Manual - Function-level | 164 | 7748 | 115 244 NL + Function Signature + Example Inputs/Outputs P s Functional Description
CoderEval [67] 2023 | Python, Java Automated Github Function-level 230 - 30 108.2 NL + Function Signature the vz:z:; ;ea'::‘ﬁirr‘\:me: str, the name of the product to be purchased, which should be in
ClassEval 2023 Python Manual - Class-level 100 33.1 45.7 123.7 Class Skeleton :return: If successful, returns the balance of the vending machine after the product is
purchased, float, if the product is out of stock,returns False. Parameter/Return
>>> vendingMachine.inventory = {'Coke': {'price": 1.25, 'quantity': 10}} Description
>>> vengingMacRine.bala?‘ce =125 (‘Coke’)
>>> vendingMachine.purchase_item('Coke’
HumanEval 00
s = = - >>> vendingMachine.inventory
from typing import List Import Statements Function {Coke': {'price’: 1.25, 'quantity": 9} """ Example Input/Output
def has_close_elements(numbers: List[float], threshold: float) -> bool: = Signature def restock_item(self, item_name, quantity): Method Signature
nan T : o Functional Description
) Check if in given list of numbers, are any two numbers clos.er to each oth.er t!!an Rt e T e T Ve e o e e ey T e e e T P
ErEniircielil Functional DeS(‘l'lpthﬂ :param item_name: The name of the product to be replenished, str, which should be
>>> has_close_elements([1.0, 2.0, 3.0], 0.5) in the vending machine.
= = % 2 S :param quantity: The quantity of the product to be replenished, int, which is greater
False Example than 0.
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) Input/Output :return: If the product is already in the vending machine, returns True, otherwise,
True™" returns False. Parameter/Return Description
>>> vendingMachine.inventory = {'Coke': {"price': 1.25, 'quantity': 10}}
MBPP >>> vendingMachine.restock_item('Coke', 10)
True
i ‘inti >>> vendingMachine.inventory
Functional Description {'Coke": {'price’: 1.25, ‘quantity": 201} Example Input/Output
"Write a python function to find the first repeated character in a given string." i

Figure 1: Examples in Existing Benchmarks

|
Figure 2: An Example of Class Skeleton in ClassEval
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= Example practices: LLM debugging
£ Coogeassbing. Step 2: Code execution

g s TEST -I]
S\ 2E B % o=

2% 3% g 26 =

) 3,%\%/ 3 e = § .§"qé~ -
& % % = & Executor e
% e Step 1: Code =

: generation
= Feedback

Code  Explanation

e,
{/
ob,-ecg@d
undefined ! Problem
methods : Model f
\ =~ 9ug
aed? I, : . ﬁ
WE 8° Yle Step 3: Code explanation
y@‘l‘” 9s ' )
&
= Figure 1: SELF-DEBUGGING for iterative debugging using a large language model. At each debug-
ging step, the model first generates new code, then the code is executed and the model explains the
code. The code explanation along with the execution results constitute the feedback message, based
on which the model infers the code correctness and then adds this message to the feedback. The
feedback message is then sent back to the model to perform more debugging steps. When unit tests

= Human Pass Rate
GPT-4 Pass Rate
=~ GPT-3.5-Turbo P: Rat 3 :
urbo Pass Rate are not available, the feedback can be purely based on code explanation.

v" Focus on rubber-duck debugging (no human intervention)
v' Tested against several benchmarks, with baseline

v' Dataset: 4,253 code examples (from LeetCode)
improvements of 2% - 12%.

v' 4 “bug” categories (syntax, reference. logic, misc)
v' Comparative analysis (GPT-3.5, GPT-4, CodelLLama, BLOOM)

ar <1V > cs > arXivi2304.05128

Computer Science > Software Engineering Computer Science > Computation and Language
[Submitted on 9 Jan 2024 (v1), last revised 11 Jan 2024 (this version, v2)] [Submitted on 11 Apr 2023 (v1), last revised 5 Oct 2023 (this version, v2)]

Debug h: Evaluating Deb ing Capability of Large Language Models Teaching Large Language Models to Self-Debug
Runchu Tian, Yining Ye, Yujia Qin, Xin Cong, Yankai Lin, Yinxu Pan, Yesai Wu, Zhiyuan Liu, Maosong Sun Xinyun Chen, Maxwell Lin, Nathanael Scharli, Denny Zhou
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= Future directions .

Data security, student privacy, bias
mitigation

Transparency in model training
Inclusive models reflecting the

v" Tackle equity and inclusion through
multilingual and multimodal LLMs
v" Models that understand cultural

diversity of the student population

v" LLMs tailored to specific domains

Programming
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Pedagogical interest-aligned LLMs

v" Add prior information, through advanced generation

techniques (such as RAG*)

v" Collect large pedagogical datasets to fine-tune LLMs

nuances, colloquial expressions, and
regional educational standards

v" Collaboration framework for
complex tasks based on
conversation procedures
LLM-based grader/critic
agents + human supervision

Edge computing* and efficiency

v" Lightweight models for edge deployment

v" Local processing of sensitive data

v" Equitable and offline access to
educational tools in low-resource settings

RAG (retrieval-augmented generation): improve the accuracy of LLMs with facts fetched from external sources
Edge computing: processing data closer to the end user, to reduce latency and increase content delivery speed
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