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§ Outline

§ How were we (humans) used to programming computers? 
§ Programming with large language models (LLMs)
§ Existing practice: selected examples
§ Future directions



§ Different ways we (humans) used to program computers

§ Programming is writing computer code (program), based on an algorithm, to solve a problem.[1]
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§ Large language models in education

§ Taxonomy of LLMs for education applications:[2][3]



§ Large language models in education

§ Existing datasets and benchmarks are constructed for 
    text-rich educational downstream tasks, with an emphasis 
    on QS (question solving), EC (error correction), 
    QG (question generation), and AG (automatic grading).[2]



§ Large language model-based programming

§ Three main opportunities:[4]

§ Generation of code from specification
  (text to code)

§ Generation of ancillary tools such as test cases 
  (code to code)

§ Generation of explanations or suggestions 
  (code to text)

https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/



§ Large language model-based programming

§ Pedagogical approaches for explaining code:[5]

§ “Explain in Plain English” (EiPE)
§ Students explain the purpose of code fragments at an abstract level

§ Code tracing
§ Students need to understand how the code executes and “predict” its behaviour (changes to memory and internal state) 

and output

§ Pair programming
§ Students explain their code and their thinking process to their partner

§ Misconception-based feedback
§ Students follow prompts based on common misconceptions to guide discussion about code



§ Example practices: code explanation

§ Setting: e-book on Web software development [5]

§ Goal: integrate explanations generated by LLMs into Computer Science classrooms.

§ Research questions:
§ RQ1: How do students engage with the generated explanations, and which types of explanations do they use most 

frequently? For what types of code snippets do students request explanations? 
§ RQ2: What are the characteristics of explanations that students rate as most and least helpful? 

§ Approach: Use of LLMs to generate three types of explanations:
§ Line-by-line explanation
§ List of important concepts
§ High-level summary of the code

§ A total of 13 code snippets * 5 code explanations * 3 types of explanations = 195 explanations were 
generated and added to two chapters of the e-book.



Code snippet: JavaScript program that uses the Deno 
runtime to launch a Web server.

Line-by-line
Concepts/purpose

Summary

Measures: (i) explanation view time; (ii) number of 
views; and (iii) subjective ratings.

176 explanations, 
58 students, 

Summer 2022



§ Example practices: code explanation

§ Setting: 1st-year programming course, ~1,000 students [6]

§ Goal: comparison of code explanations created by students vs those generated by LLMs

§ Research questions:
§ RQ1: To what extent do code explanations created by students and LLMs differ in accuracy, length, and understandability? 
§ RQ2: What aspects of code explanations do students value? 

§ Approach: two lab sessions
§ Lab A: students created explanations (purpose and summary) for three code snippets
§ Lab B (2 weeks after): students were shown a random sample of four explanations created by the students in Lab A or 

generated by GPT-3, and assessed them based on accuracy, understandability, and length.



Lab A: function definitions

963 explanations (Lab A), 
954 students (Lab B), 

2022



§ Example practices: code generation

§ Setting: 1st-year programming course in Python [7]

§ Goal: propose a new type of programming problem to teach coding based on Prompt Problems and 
related ways of assessing it

§ Research questions:
§ RQ1: How do students interact with Prompt Problems while learning to program? 
§ RQ2: How do students perceive Prompt Problems affecting their learning of programming concepts? 

§ Approach: “Promptly” tool
§ Each prompt problem consists of a visual representation of a problem (no textual description is given) and a set of 

associated test cases used to verify the code generated by the LLM.



Promptly interface & example exercises



Results of student interactions

Pilot study
54 students
July 2023



Results of student interactions

Large scale study
202 students (Lab 10)
147 students (Lab 11)
2,939 prompt submissions
August 2023

RQ1: How do students interact with 
Prompt Problems while learning to program? 



Results of student interactions

Large scale study
202 students (Lab 10)
147 students (Lab 11)
August 2023

RQ2: How do students perceive Prompt 
Problems affecting their learning of 
programming concepts? 



§ Example practices: code generation

§ Setting: introductory Python exercises [8]

§ Goal: how to design prompts for LLMs to produce next-step hints and enhance them with 
explanations.

§ Research questions:
§ RQ1: To what extent can we use LLMs to generate informative and effective next-step hints for Python introductory 

programming exercises? 
§ SQ1 What prompt characteristics are suitable for generating effective next-step hints with LLMs? 
§ SQ2 What are students’ and experts’ perceptions of the quality of LLM-generated next-step hints? 

§ Approach: “StAP-tutor” (Step Assisted Programming tutor)
§ Input is a dataset with sequences of steps students take when solving a programming problem (148 participants)
§ Sequences are used to engineer a prompt for generating next-step hints
§ StAP-tutor allows the students to practice Python with the help of next-step hints.



Exercise for prompt engineering

Example hints using different prompt instructions



§ Example practices: code generation

§ Goal: extend “simple” benchmarks for code generation to more “complex” scenarios. [9]



§ Example practices: LLM debugging

ü Dataset: 4,253 code examples (from LeetCode)
ü 4 “bug” categories (syntax, reference. logic, misc)
ü Comparative analysis (GPT-3.5, GPT-4, CodeLLama, BLOOM) 

ü Focus on rubber-duck debugging (no human intervention)
ü Tested against several benchmarks, with baseline 

improvements of 2% - 12%.



§ Future directions [2]

Pedagogical interest-aligned LLMs
ü Add prior information, through advanced generation 

techniques (such as RAG*)
ü Collect large pedagogical datasets to fine-tune LLMs

ü Collaboration framework for 
complex tasks based on 
conversation procedures

ü LLM-based grader/critic 
agents + human supervision

ü Tackle equity and inclusion through 
multilingual and multimodal LLMs

ü Models that understand cultural 
nuances, colloquial expressions, and 
regional educational standards

Edge computing* and efficiency
ü Lightweight models for edge deployment
ü Local processing of sensitive data
ü Equitable and offline access to 

educational tools in low-resource settings

ü LLMs tailored to specific domains

ü Data security, student privacy, bias 
mitigation

ü Transparency in model training
ü Inclusive models reflecting the 

diversity of the student population

RAG (retrieval-augmented generation): improve the accuracy of LLMs with facts fetched from external sources
Edge computing: processing data closer to the end user, to reduce latency and increase content delivery speed
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