Fiocruz Bahia na 17ª SNCT

21/10 tarde

15H ÀS 16H30 - PAINEL TEMÁTICO: A UTILIZAÇÃO DA INTELIGÊNCIA ARTIFICIAL E TOMADA DE DECISÕES SOBRE A PANDEMIA NO BRASIL

MODERADOR: Robespierre Pita CIDACS / Fiocruz Bahia

PAINELISTAS:

Fabio Porto - DEXL/LNCC Anderson Rocha - IC/UNICAMP Erick Sperandio - SENAI/CIMATEC Marcos Barreto - AtyImoLab/UFBA/CIDACS

Iniciativas de IA da Rede CoVida no contexto da Covid-19

Prof. Dr. Marcos E. Barreto

AtyImoLab/UFBA – CIDACS

www.atyimolab.ufba.br

cidacs.bahia.fiocruz.br

Roteiro

- IA para classificação (processamento de imagem médica).
- Revisão da literatura sobre uso de modelos de IA em diferentes categorias de aplicações.
- IA para prognóstico de Covid-19 (contexto de Saúde Digital).
- Modelos mistos de IA para análise de cenários complexos e bibliometria.

MDPI

MDPI

Article Convolutional support vector models: prediction of Coronavirus disease using chest X-rays

Mateus Maia¹, Jonatha Pimentel¹, Ivalbert Pereira¹, João Gondim², Marcos E. Barreto², Anderson Ara^{1,†}

¹ Federal University of Bahia, Statistics Department, Salvador, Brazil

² Federal University of Bahia, Computer Science Department, Salvador, Brazil

† anderson.ara@ufba.br

Version October 19, 2020 submitted to Information

Table	5. (Overview	of the	image	dataset	used	in f	this	work.

	COVID-19	Other diseases	Healthy	Total
Quantity	217	108	112	437

https://openi.nlm.nih.gov/ https://www.github.com/ieee8023/covid-chestxray-dataset

Figure 14. Computational time of training and prediction of each algorithm over one holdout repetition.

Figure 10. Example of X-rays: (a) and (b) COVID-19; (c) and (d) other diseases; and (e) and (f) healthy.

Figure 8. CSVM architecture. Adapted from [37].

Method	ACC	F1	MCC	Time
MLP ₁	95.54	95.46	91.57	0.0422
MLP ₂	96.59	96.56	93.48	0.0370
CNN ₁	96.67	96.63	93.48	0.7792
CNN_2	96.73	96.67	93.74	0.7585
SVM _{Lin}	80.79	80.21	61.98	0.0074
SVM_{Pol}	77.90	77.24	56.30	0.0076
SVM_{RBF}	83.45	83.86	67.39	0.0067
CSVM _{Lin}	98.00	97.97	96.11	0.0081
\mathbf{CSVM}_{Pol}	96.57	98.13	96.36	0.0078
CSVM <i>Gau</i>	98.14	96.59	93.34	0.0086

Table 6. Performance results. MLP1 corresponds to the model with more parameters, while MLP2 corresponds to the model with fewer parameters. The same applies to the CNN models.

Modelos prognósticos para COVID-19

Vinícius Oliveira (FIOCRUZ Brasília) Manoel Barral-Netto (FIOCRUZ Bahia) Viviane Boaventura (FIOCRUZ Bahia) Marcos Barreto (UFBA/CIDACS)

LEVES	MODERADOS	GRAVIDADE	
 Anosmia Ageusia Coriza Diarreia Dor abdominal Febre Mialgia Tosse Fadiga Cefaleia 	 Tosse persistente + febre persistente diária ou Tosse persistente + piora progressiva de outro sintoma relacionado à COVID-19 (adinamia, prostração, hiporexia, diarreia) ou Pelo menos um dos sintemas colma + pro 	 Síndrome respiratória aguda grave – síndrome gripal que apresente: Dispneia/desconforto respiratório OU pressão persistente no tórax OU saturação de O₂ menor que 95% em ar ambiente OU coloração azulada de lábios ou 	Est ma de inc dig pre doo dia

ste projeto se propõe a extrair dados anonimizados dos principais prontuários eletrônicos antidos por instituições públicas do país (e-SUS-APS e AGHU) a fim de desenvolver modelos saúde de precisão na vigilância e controle da COVID-19,

Isso

clui i) criação de alertas de surtos locais a partir da curva epidêmica local; ii) acompanhamento atal de famílias em isolamento domiciliar; iii) novos modelos de vigilância epidemiológica de ecisão pelos sintomas sugestivos da doença; iv) melhor descrição da apresentação e curso da ença; v) desenvolvimento de métodos baseados em inteligência artificial que sugiram gnóstico e prognóstico do curso individual e comunitária da COVID-19.

Ministério da Saúde. Orientações para manejo de pacientes com Covid-19 [Internet]. 2020 [citado 21 de junho de 2020]. Disponível em: https://portalarquivos.saude.gov.br/images/pdf/2020/June/18/Covid19-Orientac--o--esManejoPacientes.pdf

AI as Service for tackling the Covid-19 in Brazil

- Plataforma de IA baseada na nuvem Google para suporte à pesquisa e à tomada de decisões no contexto da pandemia de Covid-19 no Brasil.
- ✓ Dezembro/2020 a Novembro/2021.
- ✓ 3 eixos principais:

Plataforma de dados

- > Aquisição e integração de dados anonimizados, em nível municipal.
- > Desenvolvimento de um repositório (*data lake*) para acesso às fontes de dados.
- Quantidade de bases iniciais: 55

Modelos mistos de IA

- Desenvolvimento e validação de modelos computacionais (+ estatísticos e econométricos) aplicados a cenários complexos de análise.
- Estudo inicial: modelo de disseminação de epidemias em nível municipal.

Plataforma de bibliometria

Desenvolvimento de plataforma para síntese e disseminação de evidências a partir da crescente literatura relativa à Covid-19.

OBRIGADO!

Prof. Dr. Marcos E. Barreto

AtylmoLab/UFBA – CIDACS

www.atyimolab.ufba.br cidacs.bahia.fiocruz.br

marcosb@ufba.br

